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This is a study of the interactions of solitary waves climbing up a circular island. A 
series of large-scale laboratory experiments with waves of different incident height-to- 
depth ratios and different crest lengths is described. Detailed two-dimensional run-up 
height measurements and time histories of surface elevations around the island are 
presented. A numerical model based on the two-dimensional shallow-water wave 
equations including runup calculations was developed. Numerical model predictions 
agreed very well with the laboratory data and the model was used to study wave 
trapping and the effect of slope. Under certain conditions, enhanced runup and wave 
trapping on the lee side of the island were observed, suggesting a possible explanation 
for the devastation reported by field surveys in Babi Island off Flores, Indonesia, and 
in Okushiri Island, Japan. 

1. Introduction 
From 1992 to 1994, submarine earthquakes around the Pacific basin generated 

six large tsunamis: the Nicaragua tsunami on September 2, 1992; the Flores Island 
tsunami on December 12, 1992; the Hokkaido Island tsunami on July 12, 1993; the 
East Java tsunami of June 2, 1994; the Kuril Islands tsunami of October 4, 1994; 
and the Mindoro Island tsunami of November 15, 1994. They all caused extensive 
property damage and deaths of at least 1640 people (Satake et al. 1993; Yeh et al. 
1993; Hokkaido Tsunami Survey Group 1993; Yeh et al. 1995; Synolakis et al. 1995; 
Imamura et al. 1995). In the Flores Island and Okushiri events, unexpectedly large 
tsunami runup heights in the lee of small islands were observed. During the Flores 
event, two villages located on the southern side of the circular Babi Island, whose 
diameter is approximately 2 km, were washed away by the tsunami, attacking from the 
north (see figure 1). Similar phenomena occurred on the pear-shaped Okushiri Island, 
which is approximately 20 km long and 10 km wide (see figure 2). The southern region 
of the island suffered extensive damage from the tsunami attack, which approached 
the island from the northwestern direction. Maximum runup height at the marked 
location in figure 2 was about 20 m. These phenomena are apparently not entirely 
uncommon and have also been reported by Bascom (1990): “We discovered that, 
except for headlands pointing into the (tsunami) wave, embayments facing exactly 
opposite to the wave direction were likely to be most affected.” 
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FIGURE 1. A sketch of Babi Island (from Yeh et al. 1994). The 1992 tsunami attacked from the 
north. Two villages on the lee side of the island were destroyed. 
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FIGURE 2. A sketch of Okushiri Island of Japan (from Hokkaido Tsunami Survey Group 1993). The 
1993 tsunami attacked from the northwestern direction. Maximum runup height reached 30.5 m at 
Monai which faces the tsunami directly. However, the second largest runup height (- 20 m) was 
observed northeast of Aonae in the lee side of the island indicated by x. 

Determination of the runup height distribution along a coastline or around an 
island is not a trivial problem. It involves not only the three-dimensional motion of 
a free boundary, but is also highly dependent on the accuracy of bathymetric and 
topographic data, and on the initial tsunami-profile data which, in turn, depend on 
the fault solution for the earthquake. Yet accurate predictive capability is necessary to 
model the inundation from past and future hypothetical events. To this end, several 
numerical models have recently been developed to simulate historical tsunami events 
(e.g. Liu et al. 1993; Titov & Synolakis 1993; Mader & Bernard 1993; Takahashi, 
Imamura & Shuto 1993). Computational details of different models will not be 
discussed in this paper, and a detailed discussion of the tsunami generation and 
propagation problem on open coastlines will not be presented. Instead, this paper 
will concentrate on the problem of solitary wave runup on circular islands whose 
solution provides insight into counterintuitive mechanisms of tsunami inundation. 

The problem of water waves refracting around a circular island was first studied 
by Arthur (1946) and Pocinki (1950) using ray theory. Jonsson and his associates 
(e.g. Jonsson, Skovgaard & Brink-Kjaer 1976; Jonsson & Skovgaard 1979) computed 
wave-ray patterns and their amplitude distribution on a circular island for a wide 
range of incident wave frequencies. In their studies, the island bathymetry was 
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FIGURE 3. (a) A sketch of the wave ray patterns for a relatively short wave. A geometric shadow 
(lee shore) appears in the lee side of the circular island, in which the wave amplitude vanishes. 
( b )  Sketch of the wave ray pattern for a relatively long wave. Some rays whirl around the island 
several times before they reach the shore. Symmetrical rays starting from the lower part are not 
shown in full. 

idealized: it was a cylindrical ‘island’ situated on a paraboloidal shoal. Along the 
shoreline r = r ,  the water depth h, is finite. The toe of the island shoal is located at 
r = r h  where the depth is hb. Using different incident wave periods, Jonsson and his 
associates demonstrated different wave ray patterns. For a relative short wave period 
or when the wavelength is relatively smaller than the island radius, they found that 
wave rays could not propagate into the geometric shadow or the ‘lee shore’ named by 
Arthur (1946) (see figure 3a). Wave amplitude was zero in the lee shore. As the wave 
period increased, the rays from one side of the axis crossed those from the other side 
in the lee of the island. In some cases, rays whirled around the island several times 
before they reached the shore (see figure 3b). Jonsson and his associates computed 
the resulting wave amplitude by superposition and proper accounting of the phases. 
They found that for certain wave periods, the wave amplitude in the lee of the island 
exceeded that in the front of the island (Jonsson et al. 1976). 

The ray theory is based on the concept of geometric optics. Therefore, it poses a 
severe restriction (or idealization) on the bathymetry : the percentage change of the 
bathymetry within a wavelength has to be very small. As a result, both reflection 
and diffraction due to bathymetric variations are ignored. To remove some of these 
limitations, Keller and his associates (e.g. Keller 1958, 1962; Keller & Ahluwalia 
1973) developed the geometrical theory of diffraction, which introduced the concept 
of diffracted rays. Thus, this approach provides an accurate description of wave 
diffraction in a shadow region behind a structure or in the vicinity of caustics. On the 
other hand, Lautenbacher (1970), Smith & Sprinks (1975), Jonsson et al. (1976), and 
Jonsson & Skovgaard (1979) have investigated the combined refraction and diffraction 
of periodic waves by a circular island by using either the linear shallow-water wave 
theory or the linear mild-slope equation, which is suitable for intermediate water 
depth. While it is well-justified to assume that modification of tsunamis by bathymetry 
can be accurately described by linearized equations, tsunami waves are dramatically 
nonlinear in their final runup phase. Furthermore, all existing linear models stop the 
calculation at the initial shoreline. Runup invariance for one-dimensional propagation 
proposed by Carrier (1966) and proved by Synolakis (1987) notwithstanding, there is 
no evidence to suggest that there is invariance between linear and nonlinear theory 
for the two-dimensional problem. Moreover, theoretical and numerical solutions are 
not available for runup heights around a circular island caused by a solitary wave. 

The only published experimental data on runup heights of periodic waves on a 
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circular island are reported by Provis (1975). Provis' experiments were conducted in 
a small basin (5 .55 m wide and 5.80 m long). The base diameter of the island was 
3 m and the slope was 1V:lOH. The water depth in the constant-depth region in the 
experiments was 0.15 m. Provis reported large discrepancies between his experimental 
data and theoretical results predicted by Smith & Sprinks (1975). Sprinks & Smith 
(1983) pointed out later that because of the relatively small size of the wave basin and 
the shallow water, viscous damping and standing waves between the wave generator 
and the island render such comparisons inappropriate. 

This paper reports a portion of the results from a combined theoretical and 
experimental study on the three-dimensional runup of a solitary wave on a circular 
island. The generation of nearshore tsunamis notwithstanding (Tadepalli & Synolakis 
1994), solitary wave profiles are an adequate and useful model for far-field tsunamis. 
Since they can be described uniquely by a single parameter, they do provide an 
elegant framework to study complicated multi-parameter phenomena. Experiments 
were performed in a 30 m wide and 25 m long wave basin, so that boundary effects 
were minimized, in the sense that the important runup observations took place before 
waves were reflected from the basin walls. A numerical model developed based on the 
nonlinear shallow-water equations, and a moving boundary scheme to track shoreline 
motions are also presented. Bottom friction was also included in the numerical model, 
although it was not very important for the experiments presented here. Experimental 
data, including the time histories of free-surface displacements at different locations 
and maximum runup heights around the island, were used to verify the numerical 
model. Very good agreement was found and the model was then used to explore 
in detail other physical phenomena, such as wave trapping around the island, the 
velocity field, and enhanced runup heights in the lee side of the island. 

Section 2 discusses the experimental setup and describes the wave parameters used 
in the experiments. A brief discussion of the numerical model is given in $3. Detailed 
information on the numerical scheme and boundary conditions is given in Appendices 
A and B. Comparisons between numerical solutions and experimental data are 
presented in $4. Finally, results are discussed and findings are summarized in $5. 

2. Laboratory experiments 
Experiments were performed in a wave basin at the US Army Engineer Waterways 

Experiment Station, Coastal Engineering Research Center. The basin is 30 m wide 
and 25 m long. The centre of the circular island was located at (x = 15 m, y = 
13 m). The slope of the circular island was 14.04" (1V:4H slope) and the diameter 
at the base was 7.2 m. The surface of the island and the floor of the basin were 
smooth concrete. A directional spectral wave generator (DSWG) was installed along 
the x-axis (see figure 4) and was used to generate solitary waves. The total length of 
the wave maker is 27.432 m and it consists of 60 individual paddles moving parallel 
to the water surface; each of them is independently and electronically driven. A 
sketch of the island geometry is shown in figure 4. Twenty-seven capacitance wave 
gauges were used to measure surface-wave elevations; their locations are shown in 
figure 5, while table 1 lists the coordinates of the first 18 gauges; the other nine can 
be inferred from symmetry by reference to figure 5. 

Two water depths were used in the experiments: 0.32 m and 0.42 m. To investigate 
the effects of source length of incoming solitary waves on runup heights, different 
wave maker lengths L were used. As shown in table 2, the ratio of the source length 
L to the base-diameter of the island D ranged from 0.889 to 3.810. When the ratio is 
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FIGURE 4. (a) Top view of the wave basin and the island. ( b )  Vertical view of the circular island on 

the cross-section A-A. 

less than 1, the length of the incident solitary wave (in the transverse direction) is less 
than the shelf width. The incident wave radiated in the horizontal direction before it 
reached the island and formed a non-uniform crest line. When the entire length of 
the wave maker was used (module 4 in table 2), the incident wave form was uniform 
in the transverse direction. 

A measure of the nonlinearity of the incident wave is the height-to-depth ratio 
of the incident solitary wave, defined as E. = A / h  where h is the still-water depth 
in the constant-depth region of the tank. In these experiments, h = 0.32 m, and 
three different target initial solitary wave profiles were used with E = 0.05, 0.1 
and 0.2. Solitary waves were generated using the procedure described by Synolakis 
(1987, 1990). Unfortunately, the digital-to-analog rate for the interface used in these 
experiments is only 20 Hz; solitary waves with as high a resolution as the solitary 
waves generated by Synolakis (i.e. whose digital-to-analog rate ranged from 1000 to 
4000 Hz) were not generated. A typical command and feedback control signal for 
the paddle is shown in figure 6(a), where 5 represents the paddle movement. The 
corresponding free-surface displacements measured at gauge 1 (see figure 5), which is 
in front of the wave generator in the constant-depth region, is shown in figure 6(b). 
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Gauge x (m) y (m) Gauge x (m) y (m) Gauge 
1 15.75 6.85 7 17.58 13.00 13 
2 15.00 8.40 8 17.88 13.00 14 
3 15.00 9.40 9 18.20 13.00 15 
4 15.00 9.80 10 18.55 13.00 16 
5 15.00 10.12 11 19.63 13.00 17 
6 15.00 10.40 12 21.13 13.00 18 

TABLE 1. Locations of wave gauges. 

x (m) Y (m) 
15.00 15.60 
15.00 15.88 
15.00 16.20 
15.00 16.63 
15.00 17.63 
15.00 19.13 

Module Number of paddles DSWG length L (m) L I D  
1 14 6.401 0.889 
2 29 13.259 1.842 
3 44 20.117 2.794 
4 60 27.432 3.810 

TABLE 2. Number of paddles and length of the DSWG. 

Notice that the command and feedback signals are almost identical. These signals 
were used directly in the numerical model to generate incident waves. In figure 6(b)  
the dashed line represents the measured solitary wave profile, symmetric with respect 
to the wave crest. Note however, that the calculated free-surface profile at gauge 
1 shown by the solid line in figure 6(b) is more slanted and has a steeper front, a 
result of using the shallow-water equations in the numerical experiments. Maximum 

PIGURE 5.  Locations ot wave gauges. 

PIGURE 5.  Locations ot wave gauges. 
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FIGURE 6. A typical command and feedback control signal for the paddle movement: (a) command 
and feedback control signal of the paddle; ( b )  time histories of free-surface displacement at wave 
gauge 1 (E = O. l ,m = 4). 

runup heights were measured visually by standard surveying methods at 20 shoreline 
locations around the perimeter of the circular island. Sixteen locations were evenly 
spaced at 71/8, and four were located symmetrically at 71/16 around the lee side of 
the island to improve the resolution at that location. 

Experimental data and observations will be discussed in $4. They will also be used 
to validate the numerical model presented in the following section. 

3. Numerical model 
The wavelength of the incoming tsunami is usually very long in comparison to the 

local water depth. Wave amplitude is also small in most of the flow domain, with 
the exception of a small region adjacent to the shoreline, where runup occurs. The 
frequency dispersion may become important if the travel distance of the tsunami is 
long. Kajiura (1963) suggested that if the travel distance R is shorter than (~ /h )~ (h / lO) ,  
where a is the wave height and h the depth,'frequency dispersion can be ignored. In 
the present problem, the maximum travel distance (the length of the basin) is 30 m, 
the depth is 0.320 m, and the typical wave height-to-depth ratio is 0.1. Therefore, the 
frequency dispersion is not important in most of the region near the island. In the 
present study, nonlinear shallow-water equations in the following form are used : 

aq aP aQ 
a t  ax ay 
- + - + - = 0, 



266 P. L.-F. Liu et al. 

where q denotes the free-surface displacement, H = q + h is the total water depth, 
and h is the still-water depth. P and Q are the horizontal components of the volume 
flux in the x- and y-directions, respectively. In the event that bottom frictional effects 
become important, the bottom friction can be modelled by Manning’s formula, i.e. 
frictional terms in the form of 

& p ( p 2  + Q 2 ) I I 2  and ~ 7 / 3  gnL Q ( P 2  + Q2)1’2 
~ 7 1 3  

are introduced in the momentum equations (3.2) and (3.3), respectively. In the above 
expressions, II is the Manning’s relative roughness coefficient. 

A staggered explicit finite difference leap-frog scheme is used to solve governing 
equations (3.1)-(3.3). Nonlinear convective terms are linearized with an upwind 
scheme. Finite difference formulas for the numerical scheme are given in Appendix 
A. In modelling the circular island experiments, only one half of the basin (15 
< x < 30 m, 0 < y < 25 m, see figure 4) including one half of the circular 
island, was used as the computational domain because of the symmetry. Along 
the wave generator, the y-component of the volume flux Q is described. Along 
the centreline of the wave basin (x = 15 m, 0 < y < 25 m), the x-component of 
the volume flux P vanishes. A radiation boundary condition based on the method 
of characteristics is applied along the other two boundaries (15 < x < 30 m, y 
= 25 m; and x = 30 m, 0 < y < 25 m) as well as the wave generator, so 
that outward-going waves propagate through these boundaries without significant 
reflection. 

In the numerical computations, the computational domain is divided into a finite 
number of cells. Initially, the free-surface displacement is zero everywhere, as are 
the volume fluxes. When the grid point is on dry land, the ‘water depth’ h takes a 
negative value and gives the elevation of the land measured from the mean water 
level. The interface between the dry cell and the wet cell defines the shoreline, where 
the water depth is zero. A numerical algorithm is employed in conjunction with the 
leap-frog method to track shoreline movement. Similar algorithms for the moving 
shoreline can be found in Aida (1977), Houston & Butler (1979), and Hibberd & 
Peregrine (1979). Descriptions of the radiation boundary condition and the moving 
boundary algorithm used in the present paper are given in Appendix B. In the 
numerical experiments, friction was not found to be important. For example, by 
assuming a Manning’s coefficient n = 0.013 (the proper value for smooth concrete 
(Chow 1959)) then for a 0.1 incident wave height-to-depth ratio and four-module 
wavemaker, runup varied by only 0.5% as compared with the value with no friction. 
Therefore, in the subsequent calculations the friction terms are not included, which 
may be of importance in specific field problems. 

Numerical simulations of the laboratory experiments have been performed for all 
cases (Cho 1994). Only a small set of results will be discussed in detail in this 
paper. To facilitate discussion of the results in the following sections, a sequence of 
snapshot-type figures of free-surface displacement of an E = 0.1 wave in the vicinity 
of the circular island is first presented. In the numerical computations, mesh size and 
time-step size were fixed, Ax = Ay  = 0.1 m and At = 0.02 s. As shown in figure 7(a-c), 
the incident solitary wave attacks the front end of the island and generates significant 
runup. Once the wave reaches its maximum runup heights along the front of the 
island, the wave runs down the beach back to the waterline and creates a cylindrical 
wave pattern. A portion of the wave propagates along the shoreline towards the lee 
side of the island (see figure 7c, t = 11 s). Because of the island bathymetry, the 
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FIGURE 7. Snapshots of free-surface profiles at different times (6 = 0.1, module 4): (a) t = 7 s, a 
solitary wave approaches the island; ( b )  t = 9 s, wave runup occurs in the front of the island; (c) 
t = 11 s, three-dimensional waves appear in the front of the island and the trapped wave propagates 
along the shoreline; ( d )  t = 13 s, two trapped waves collide in the lee side of the island; ( e )  t = 15 s, 
trapped waves propagate continuously along the shore after the collision. 

crest line of the leading wave is bent, i.e. the wave form propagates with a faster 
speed offshore because of greater depth. In figure 7(c), the wave crest line indicates 
that while the solitary wave propagates in the y-direction far offshore, waves on 
the island shoal are propagating in alongshore directions at a slower speed. The 
latter have a large amplitude at the shoreline, which decays exponentially offshore 
in the radial direction. These two wave components, the incident solitary wave and 
the trapped wave propagating around the island, are eventually separated at t = 
13 s (see figure 7d,  where the solitary wave has moved out of the picture). At this 
moment, two trapped waves collide with each other in the lee side of the island 
and generate high runup heights. These trapped waves pass through each other 
and continue propagating around the island in figure 7(e) .  Because they are not 
perfectly trapped, waves and certain amounts of energy are leaking continuously 
into offshore areas. Then these trapped waves die out gradually. These features are 
similar to those demonstrated by the ray theory (see figure 3b), i.e. the rays near the 
centreline impinge on the front side of the island, while the rays far away from the 
centreline whirl around the island before reaching the shore. However, the present 
solutions include nonlinear effects, diffraction effects, and the effect of a moving 
shoreline. 
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4. Comparisons between laboratory experiments and numerical simulations 
This section presents only a small portion of detailed comparisons between lab- 

oratory and numerical experiments. More comparisons with numerical results are 
presented in Cho (1994) and with analytical results in Kanoglu (1995). 

4.1. Free-surface displacement 
Figure 8 presents comparisons between wave gauge data and numerical results for 
an E = 0.1 incident solitary wave and where the length of the wave generator is 
27.432 m (module 4 in table 2). Locations of the wave gauges are shown in table 1 
and in figure 5. Overall agreement between numerical solutions and experimental 
data is good and the numerical-generated free-surface profiles of the leading wave 
have steeper fronts, as noted earlier in figure 6(b). This is a typical feature of the 
shallow-water equation solutions. Nevertheless, wave height and total volume are the 
same in both the numerical results and the experimental data. In front of the island, 
wave gauges 1-6 show a leading wave followed by a depression wave, resembling the 

FIGURE 8(a-f). For caption see page 270. 
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LEN waves of Tadepalli & Synolakis (1994). However, the depression wave here is 
the reflected wave from the island slope in Carrier & Noiseux (1983) and Synolakis 
(1987). The reflected nature of this wave was also confirmed by calculating the travel 
time of the depression wave from gauge 3 to gauge 1. The distance in the y-direction 
between these two gauges is 2.55 m. The numerical wave height of the depression wave 
at gauge 3 was estimated as -0.02 m, its phase speed as 1.72 ms-', and its travel time 
for the depression wave from gauge 3 to gauge 1 as 1.49 s, almost exactly the same to 
that estimated from experimental data. Note that the second elevation wave appears 
in the experimental data, which can not be reproduced in the numerical solutions. 
This second elevation wave is the re-reflected wave from the wave generator. In 
the numerical model a radiation boundary condition has been employed so that the 
reflected wave from the island propagates out of the computational domain without 
being re-reflected. On the lee side of the island the reflection of the solitary waves from 
the boundary of the basin is also evident (figure 8m-r). Once again, numerical results 
do not reproduce these reflected waves, because of the radiation boundary condition. 

Runup of solitary waves on a circular island 
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locations: ' .  . .  ., experimental data; -, numerical solutions. 

However, these re-reflected waves do not affect the maximum runup heights observed 
in the laboratory; the maximum runup observed was always due to the first wave, 
and subsequent reflections produced significantly smaller runup values. 

As demonstrated in figure 7, because of refraction the crest line of the leading 
wave bends towards the direction perpendicular to the shoreline except in the region 
very near the shore. This feature is further illustrated by plotting the arrival time 
of the leading wave crest along wave gauges 7-12 and 13-18, respectively. Arrival 
times are of engineering importance in the deployment of tsunami warning systems, 
and therefore accurate predictions are a significant validation test for any tsunami 
inundation model. In figure 9(a), arrival times obtained from the experimental data 
and numerical solutions for gauges 7-12 are plotted, all parallel to the wave generator. 
Arrival times at offshore gauges 11 and 12 are almost identical and shorter than those 
on the island slope. Arrival times vary almost linearly on the slope, with the longest 
time at the shallowest water. In the lee of the island at wave gauges 13-18, this trend 
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of arrival times is reversed and is shown in figure 9(b). These arrival times are longer 
in the offshore region than those on the slope and are caused by the bending of the 
leading wave crest line. Furthermore, arrival times of the wave crest on the slope are 
almost identical, indicating that the crest line is nearly parallel to the shoreline. 
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4.2. Maximum runup heights 

In figure 10, normalized maximum runup heights around the island are presented for 
different incident wave heights; here the angle f l  is measured in the counterclockwise 
direction around the island from the incoming wave direction. For the cases where 
wave heights are 0.032 m ( E  = 0.1) and 0.016 m ( E  = 0.05), normalized maximum 
runup heights are almost identical. Large differences were observed between the 
numerical results and the laboratory data when the incident wave height was 0.064 m 
(e = 0.2). This is when the wave broke in its laboratory realization, and a non- 
breaking wave model is used in the numerical computations. To our knowledge, no 
numerical solution has been demonstrated to successfully reproduce breaking in a 
two-dimensional flow and this remains an important but unsolved question. 

In general, maximum runup height is largest in front of the island (i.e. f l  = 0) and 
it decreases gradually as the wave moves toward the lee side of the island at p = n. If 
the length of the wave generator is much larger than the base diameter of the island 
(e.g. for the module 4 case), there is a drastic increase in maximum runup height at 
the lee of the island, see for example the f l  = .n case in figure 10. This is because 
of the collision of the two trapped waves shown in figure 7(d). When E = 0.1, the 
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FIGURE 12. Instantaneous shoreline locations in front of the island near the maximum runup height 
( t  = 9.0 s) for E = 0.1 and module 4: . . . . ., initial shoreline; - - - -, the top of the island; --, 
shoreline location. 

maximum runup height at p = n is actually larger than that measured at the front 
p = 0. However, the numerical model did not reproduce this feature. This enhanced 
runup height in the lee side of the island will be discussed in greater detail in the 
following section. 

5. Discussion 
This section will describe results of the numerical model not readily available from 

the experimental data. The model will also be extended to study other ranges of the 
physical parameters, to further elucidate the runup patterns around the island. 

The numerical model calculates the volume flux components P and Q at each 
time step. These can be converted to the depth-averaged velocity vector. Figure 11 
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shows a sequence of snapshots of velocity distributions at the back of the island, 
71/2 < p < IT, for 6 = 0.1 and module 4. Owing to symmetry, velocity patterns in the 
region n < p < 3n/2 are mirror images of those shown in figure 11. Corresponding 
free-surface displacements are shown in figure 7. It is evident that although wave 
celerity is smaller near the shoreline, the depth-averaged particle velocity is much 
larger near the shoreline. Two trapped waves collide at the lee side of the island and 
create the maximum particle velocity at t = 12.5 s. 

The affected area during the runup in front of the island is much wider than 
that in the lee of the island. In figure 12, a sequence of shoreline locations in 
front of the island before the runup height reaches its maximum is shown. At 
maximum runup (i.e. t = 9 s) almost the entire front half of the island is inundated, 
yet the runup in the lee of the island floods a much smaller area (see figure 13). 

x (m> 
FIGURE 13. Instantaneous shoreline locations in the lee of the island near the maximum runup 
height ( t  = 13.2 s) for E = 0.1 and module 4: . . . ., initial shoreline; - - - -, the top of the island; 
-, shoreline location. 
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The difference can be explained as follows: during the runup phase, the velocity 
field in front of the island is mostly in the onshore direction over a relatively 
broad area. On the other hand, in the lee of the island, the velocities are in the 
alongshore direction before the trapped waves collide with each other (see figure 1 lc- 
d). Because of the symmetry and because the shoreline is allowed to move, alongshore 
velocities near the shoreline turn into the onshore direction very sharply at the 
time of collision. This causes the enhanced and focused runup area in the lee of 
the island. 

To illustrate the dynamics of the enhanced runup, a sequence of the free-surface 
configurations in the lee of the island is shown in figure 14. At t = 11.8 s, two 
leading waves almost reach the line of symmetry. Wave crests in the deeper water 
move faster than those along the shoreline at t = 12 s. The two wave crests meet 
offshore first, as shown in figure 14(b); their collision produces a surge towards the 
shore, while the wave crests along the shoreline approach each other continuously 
(see figure 14c,d). Once the wave crests along the shoreline collide into each other, 
shoreward surging is enhanced. The maximum runup height along the symmetry line 
is reached at t = 13 s. 

Figure 15 presents amplitude variations in the on-offshore direction at two dif- 
ferent locations ( p  = 71/2 and x) over two different time periods. The begin- 
ning of each period represents the moment when the wave starts to run down 
the beach. In the figure, the profile for the Stokes mode edge wave on a plane 
beach is also plotted. The Stokes mode edge wave is assumed to have the same 
wave period as that of the incident solitary wave, which is estimated from the 
duration of the wave-maker motion (Briggs, Synolakis & Harkins 1994). From 
the present experiments, the wave period of the incoming solitary wave is calcu- 
lated as 4.905 s when the wave height is 0.032 m and the offshore water depth 
is 0.32 m. From the linear shallow-water theory, the free-surface profile of the 
Stokes mode edge wave on a plane sloping beach is given by (Schaffer & Jons- 
son 1992) 

y~ = A,  exp (-py) cos (px - at) (5.1) 

in which the wavenumber of the Stokes mode edge wave p is given by 

with w and 6' being the angular frequency and the beach angle, respectively. Using % 
= 14.04' and T = 4.905 s, p is calculated as 0.669. A,  denotes the shoreline amplitude 
and (x, y )  represent Cartesian coordinates with the origin at  the shoreline; the X-axis 
points in a counterclockwise direction and the y-axis points in the seaward direction, 
respectively. In figure 15, the measured shoreline amplitude at the beginning of each 
period is used as A,  in (5.1). It is very clear that the calculated trapped waves leak 
wave energy in the seaward direction and cannot be fully described by the Stokes 
mode edge wave. 

Finally, the effects of beach slope on runup heights of the circular island were 
investigated. Figure 16 compares the normalized maximum runup heights for an 
f = 0.1 wave for three different beach slopes (% = 14.04", 20" and 30'). Similar to the 
two-dimensional plane beach cases (Liu & Cho 1994), the maximum runup height 
decreases as beach slope increases. The variation of runup heights around the island 
remains similar in all three cases, 
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FIGURE 16. Maximum runup heights around the island for different island slope: 

0, 8 = 14.04"; A, 8 = 20"; 0, 8 = 30". 

6. Conclusions 
A series of laboratory experiments and a new model for studying the evolution 

and runup of a solitary wave around a circular island have been presented. When 
the laboratory manifestation of the wave does not break on the front of the island, 
good agreement between laboratory data and numerical results has been founded. 
Based on the findings of this study, it can be concluded that the solitary wave runup 
around a circular island may produce enhanced runup of the lee side of the island, 
depending primarily on the ratio of the crest length of the wave to the island diameter. 
Maximum runup decreases as beach slope increases. These results help explain the 
mechanism of the catastrophe on Babi island, where unusually large inundation was 
observed on the lee side of the island. Numerical solutions for the depth-averaged 
velocity distributions indicate that the velocity tends to be strong nearshore and could 
cause significant sediment transport if the island has a sandy beach. 
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Appendix A 
This appendix presents finite difference forms for the nonlinear shallow-water 

equations, (3.1)-(3.3). The governing equations without nonlinear terms can be 
discretized with the staggered explicit leap-frog finite difference scheme as 
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As shown in figure 17, the index ( i , j )  denotes spatial nodes and n represents time 
level. Free-surface displacement and water depth are defined at the centre of each grid 
cell, while volume fluxes are defined at the interfaces of the grid. Ax and Ay represent 
the spatial step sizes in the x- and the y-directions, respectively, and At stands for the 
time-step size. Nonlinear convective terms are discretized with the upwind scheme. 
Thus, the nonlinear terms of the momentum equations are discretized as 

h re the coefficients, A, are determined from 

A l l  = 0, = 1, 213 = -1, if PG,/2,j 2 0 
A l l  = 1, A I 2  = -1, 213 = 0, if < 0, 

FIGURE 17. Staggered finite difference grid system. 
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231 = 0, i 3 2  = 1, 2 3 3  = -1, if P ; ~ + ~ ~ ~  > o 
231 = 1, 232 = -1, 233 = 0, if < 0, 

241 = 0, 242 = 1, 1-43 = -1, if Q:J+112 3 0 
241 = 1, A42 = -1, A43 = 0, if Q:fJ+llz < 0. 

Since the upwind scheme is employed, it should be reiterated that the discretized 
momentum equations are only first order in accuracy in terms of spatial grid sizes. 
Finally, the finite difference equations for the continuity and momentum equations 
can be written as 

(A 8) 
n+1/2 - n-112 - 

%,J - V4J rx(P,",,/2,J - ':1/2,J) - ) " ~ ( Q : J + I / ~  - Q : J - I / ~ )  , 
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Appendix B 

imposed along the shoreline and the outer boundaries, respectively. 
This appendix describes the moving boundary and radiation boundary conditions 

B.l. Moving boundary condition 
Initial conditions for the present problem require that free-surface displacement and 
volume fluxes be zero everywhere in the computational domain. When the grid point 
is on dry land, the ‘water depth’ h takes a negative value and gives the elevation of 
the land measured from the mean water level. In a land (dry) cell the total depth 
N = h + q has a negative value. On the other hand, the wet cell has a positive H 
value. The interface between the dry cells and wet cells defines the shoreline. Figure 18 
shows a schematic sketch of the moving boundary treatment used in the study. MWL 
represents the still-water depth and Hf denotes the flooding depth. The continuity 
equation, in conjunction with boundary conditions along offshore boundaries, is used 
to find free-surface displacements at the next time step in the entire computational 
domain, including the dry (land) cells. The free-surface displacement at a dry land grid 
remains zero, because the volume fluxes are zero at the neighbouring grid points (see 
figure 17). At a shoreline grid, the total depth H is updated. A numerical algorithm 
is needed to determine if the shoreline should be moved. Momentum equations are 
used to update the volume fluxes in the wet cells only. 

To illustrate the numerical algorithm for the moving boundary, the one-dimensional 
case is used as an example. As shown in figure 18, real bathymetry has been replaced 
by a staircase representation. Total depths H are calculated and recorded at i-1, i, 
and i+l grid points, while volume fluxes are computed at i-1/2, i+1/2, and i+3/2 
grid points. As shown in figure 18(a) the ith cell is a wet cell in which the total depth 
is positive and the ( i+l) th  cell is a dry (land) cell with a negative total depth. The 
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volume flux at the i+3/2 grid point is zero. The shoreline is somewhere between 
the ith and the (i+l)th grid point. Then, the volume flux at the i+1/2 grid point is 
also assigned the value zero. In the case shown in figure 18(b), however, the volume 
flux at the i+1/2 grid point is no longer zero. The new shoreline is located at the 
i+l grid point. After the total depth has been updated from the continuity equation, 
the following algorithm is used to determine whether or not the shoreline should be 
moved. If Hi > 0, the possible cases can be summarized as follows. 

If Hi+1 d 0 and hi+l + qi < 0, then the shoreline remains between grid point i and 
i + 1 and the volume flux Pi+1/2 remains zero. 

If Hi+l < 0 and hi+l + qi > 0, then the shoreline moves to between grid points i+ 1 
and i+2. The volume flux Pi+l/2 may have a non-zero value, while Pi+3/2 is assigned 
the value zero. The flooding depth is Hf = hi+l + qi. 

If Hi+l > 0, then the shoreline moves to between grid points i + l  and i+2. The 
volume flux Pi+1/2 may also have a non-zero value, while Pi+3/2 is zero. The flooding 
depth is Hf = max (hi+l + qi, hi+l + qi+l) .  

In the above cases, the time-step index has been omitted for simplicity. The algorithm 
works for both flooding and receding shoreline cases. The algorithm is developed 
for a two-dimensional problem and the corresponding y-direction algorithm has the 
same procedure as that for the x-direction. 

To save computing time, the regions representing permanent dry (land) can be 
excluded from the computation by installing a depth criterion. Moreover, when H is 
very small, the associated bottom friction term will become large and, accordingly, 
the lower bound of water depth is used to avoid the difficulty. 

B.2. The radiation boundary condition 
The radiation boundary condition used in this study is an extension of the one- 
dimensional method of characteristics. For sinusoidal waves propagating in the 
positive x-direction (see figure 19a), the free-surface displacement yo"+' of open- 
boundary point o at time step n + l  can be approximated by the known value $ at 
point b, since all the information at point b will be transferred to point p along the 
characteristic line & if wave amplitude is small in comparison with local water depth 
h. The location of base point b, where the characteristic line starts, can be found as 

(B 1) 
and the free-surface displacement qz at base point b can be interpolated linearly using 
the known values q," and ~ 0 "  at points a and 0, respectively, as 

1 = (gh)"* At 

and 

q:+* = yl;. 

Similarly, the volume flux P,"+' can be found by 

Po"+1 = P," + 1 - - (Po" -P,") ( 3 
If the wave propagation direction is known locally along the open boundary, this 

one-dimensional method of characteristics can be extended to the two-dimensional 
case without great difficulty. It is assumed that the uniform waves propagate in the 
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FIGURE 19. Radiation boundary condition: (a )  one-dimensional radiation boundary; 
( b )  two-dimensional radiation boundary. 

s-direction with angle 8 with the x-direction (see figure 19b). The angle f3 can be 
found by using the known values, i.e. Pt and @, as 

e = tan-' [ $1 
The coordinates are of the base point b, (xl ,yl) ,  

x1 = - I  cos 8, yl = -1 sin 0. 

Now the free-surface displacement yl; and the volume fluxes (Pl,QE) can be found 
by interpolating the values of the surrounding four points (i.e. 0, a, c, and d ) .  After 
interpolation, the following values are set : 

r:+l = rl;, (B 7) 

,;+I = p;, z+' = Q!. (B 8) 

When the free-surface displacement yl," is zero, the propagation angle 8 is not defined. 
In this case the equation for f3 can be replaced by 

where the overbar represents the values averaged over the adjacent points. 
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